Header Background
 
 
 
Seminar mit gesichertem Termin

Nvidia Rapid Application Development Using Large Language Models (RADLLM)

Seminardauer: 1 Tag

Ziele der Schulung

Recent advancements in both the techniques and accessibility of large language models (LLMs) have opened up unprecedented opportunities for businesses to streamline their operations, decrease expenses, and increase productivity at scale. Enterprises can also use LLM-powered apps to provide innovative and improved services to clients or strengthen customer relationships. For example, enterprises could provide customer support via AI virtual assistants or use sentiment analysis apps to extract valuable customer insights.

In this course, you’ll gain a strong understanding and practical knowledge of LLM application development by exploring the open-sourced ecosystem, including pretrained LLMs, that can help you get started quickly developing LLM-based applications.

Please note that once a booking has been confirmed, it is non-refundable. This means that after you have confirmed your seat for an event, it cannot be cancelled and no refund will be issued, regardless of attendance.

Zielgruppe Seminar

This course is designed for AI researchers, machine learning engineers, and deep learning practitioners interested in developing and deploying large language models (LLMs). It is suitable for professionals in natural language processing (NLP), computational linguistics, and AI-driven applications who want to deepen their understanding of state-of-the-art LLM techniques. The course is aimed at those who already have experience in deep learning, especially with transformer-based models, and are looking to explore more advanced topics such as multimodal formulations, text generation, and stateful models.

Voraussetzungen

  • Introductory deep learning, with comfort with PyTorch and transfer learning preferred. Content covered by DLI’s Getting Started with Deep Learning or Fundamentals of Deep Learning courses, or similar experience is sufficient.
  • Intermediate Python experience, including object-oriented programming and libraries. Content covered by Python Tutorial (w3schools.com) or similar experience is sufficient.

Lernmethodik

Die Schulung bietet Ihnen eine ausgewogene Mischung aus Theorie und Praxis in einer erstklassigen Lernumgebung. Profitieren Sie vom direkten Austausch mit unseren projekterfahrenen Trainern und anderen Teilnehmern, um Ihren Lernerfolg zu maximieren.

Seminarinhalt

From Deep Learning to Large Language Models

  • Learn how large language models are structured and how to use them:
  • Review deep learning- and class-based reasoning, and see how language modeling falls out of it.
  • Discuss transformer architectures, interfaces, and intuitions, as well as how they scale up and alter to make state-of-the-art LLM solutions.

Specialized Encoder Models

  • Learn how to look at the different task specifications:
  • Explore cutting-edge HuggingFace encoder models.
  • Use already-tuned models for interesting tasks such as token classification, sequence classification, range prediction, and zero-shot classification.

Encoder-Decoder Models for Seq2Seq

  • Learn about forecasting LLMs for predicting unbounded sequences:
  • Introduce a decoder component for autoregressive text generation.
  • Discuss cross-attention for sequence-as-context formulations.
  • Discuss general approaches for multi-task, zero-shot reasoning.
  • Introduce multimodal formulation for sequences, and explore some examples.

Decoder Models for Text Generation

  • Learn about decoder-only GPT-style models and how they can be specified and used:
  • Explore when decoder-only is good, and talk about issues with the formation.
  • Discuss model size, special deployment techniques, and considerations.
  • Pull in some large text-generation models, and see how they work.

Stateful LLMs

  • Learn how to elevate language models above stochastic parrots via context injection:
  • Show off modern LLM composition techniques for history and state management.
  • Discuss retrieval-augmented generation (RAG) for external environment access.

Assessment and Q&A

  • Review key learnings.
  • Take a code-based assessment to earn a certificate.

Hinweise

Partner

Dieses Seminar bieten wir in Kooperation mit unserem Nvidia Learning Partner Fast Lane Institute for Knowledge Transfer GmbH an.

Open Badge für dieses Seminar - Ihr digitaler Kompetenznachweis

Digital Skills Open Badges

Durch die erfolgreiche Teilnahme an einem Kurs bei IT-Schulungen.com erhalten Sie zusätzlich zu Ihrem Teilnehmerzertifikat ein digitales Open Badge (Zertifikat) – Ihren modernen Nachweis für erworbene Kompetenzen.

Ihr Open Badge ist jederzeit in Ihrem persönlichen und kostenfreien Mein IT-Schulungen.com-Konto verfügbar. Mit wenigen Klicks können Sie diesen digitalen Nachweis in sozialen Netzwerken teilen, um Ihre Expertise sichtbar zu machen und Ihr berufliches Profil gezielt zu stärken.

Übersicht: NVIDIA Schulungen Portfolio

Mehr zu den Vorteilen von Badges

Gesicherte Kurstermine

TerminStandortAktion
12.05.2025 Virtual Classroom (online) Seminar jetzt anfragen
07.07.2025 Virtual Classroom (online) Seminar jetzt anfragen
01.09.2025 Virtual Classroom (online) Seminar jetzt anfragen
27.10.2025 Virtual Classroom (online) Seminar jetzt anfragen

Seminare kurz vor der Durchführung

TerminStandortAktion
27.03.2025 Hamburg Seminar jetzt anfragen
24.04.2025 Köln Seminar jetzt anfragen
06.05.2025 Köln Seminar jetzt anfragen
03.06.2025 Nürnberg Seminar jetzt anfragen
 
4 Gesicherte Termine
12.05. - 12.05.2025 in Virtual Classroom (online)
07.07. - 07.07.2025 in Virtual Classroom (online)
01.09. - 01.09.2025 in Virtual Classroom (online)
alle anzeigen

1.) Wählen Sie den Seminartyp:




2.) Wählen Sie Ort und Datum:

500,00 € Preis pro Person

spacing line595,00 € inkl. 19% MwSt
all incl.
zzgl. Verpflegung 30,00 €/Tag bei Präsenz

Seminar jetzt anfragen Auf den Merkzettel
PDF IconPDF Icon
 

Diese Seite weiterempfehlen:

0
Merkzettel öffnen
0
Besuchsverlauf ansehen
IT-Schulungen.com Control Panel
Warnung Icon Sie haben in Ihrem Browser Javascript deaktiviert! Bitte aktivieren Sie Javascript um eine korrekte Darstellung und Funktionsweise von IT-Schulungen zu gewährleisten. Warnung Icon