Header Background
 
 
 

Data Analytics mit Machine Learning - Ensemble-Methoden und Hyperparameter-Tuning

Seminardauer: 2 Tage

Ziele der Schulung

In dieser 2-tägigen Schulung "Data Analytics mit Machine Learning - Ensemble-Methoden und Hyperparameter-Tuning" lernen Sie fortgeschrittene Methoden zur Verbesserung der Modellgenauigkeit und -effizienz kennen. Ziel ist es, Ihnen tiefe Einblicke in Ensemble-Methoden, Modellbewertung und Hyperparameter-Tuning zu vermitteln. Sie werden in der Lage sein, komplexe Machine Learning-Modelle zu implementieren, deren Leistung zu bewerten und zu optimieren. Praktische Anwendungen und Fallstudien unterstützen die Umsetzung des theoretischen Wissens in reale Szenarien.

Zielgruppe Seminar

  • Data Scientists
  • Data Analysten
  • Fachkräfte im Bereich Datenanalyse

Voraussetzungen

Für eine optimale Teilnahme am Kurs empfehlen wir folgende Vorkenntnisse:

  • Grundlegende Kenntnisse in Machine Learning und Programmiererfahrung in Python
  • Erste Erfahrungen mit gängigen ML-Bibliotheken (z.B. scikit-learn, TensorFlow) sind von Vorteil aber nicht zwingend erforderlich.

Lernmethodik

Die Schulung bietet Ihnen eine ausgewogene Mischung aus Theorie und Praxis in einer erstklassigen Lernumgebung. Profitieren Sie vom direkten Austausch mit unseren projekterfahrenen Trainern und anderen Teilnehmern, um Ihren Lernerfolg zu maximieren.

Seminarinhalt

Einführung in fortgeschrittene Machine Learning-Techniken

  • Überblick über Machine Learning-Modelle und deren Einsatzgebiete
  • Theoretische Grundlagen und Konzepte

Ensemble-Methoden

  • Bagging-Methoden (z.B. Random Forests)
  • Boosting-Methoden (z.B. Gradient Boosting, AdaBoost)
  • Stacking und Blending
  • Kombination von Modellen zur Erhöhung der Genauigkeit

Modellbewertung

  • Evaluationsmetriken für Klassifikation und Regression
  • Kreuzvalidierungstechniken
  • ROC-Kurven und AUC
  • Umgang mit unbalancierten Datensätzen

Hyperparameter-Tuning

  • Bedeutung und Auswahl der richtigen Hyperparameter
  • Grid Search und Random Search
  • Bayesian Optimization
  • Automatisierte Hyperparameter-Tuning-Tools

Feature Engineering und Auswahl

  • Bedeutung von Feature Engineering im Machine Learning
  • Techniken zur Feature-Auswahl und -Extraktion
  • Einsatz von PCA und anderen Dimensionenreduktionsmethoden

Modellinterpretierbarkeit und -verwendung

  • Methoden zur Modellinterpretation (z.B. SHAP, LIME)
  • Ethische Überlegungen und Bias-Handling
  • Produktionsreife und Modell-Deployment

Open Badge für dieses Seminar - Ihr digitaler Kompetenznachweis

IT-Schulungen Badge: Data Analytics mit Machine Learning - Ensemble-Methoden und Hyperparameter-Tuning

Durch die erfolgreiche Teilnahme an einem Kurs bei IT-Schulungen.com erhalten Sie zusätzlich zu Ihrem Teilnehmerzertifikat ein digitales Open Badge (Zertifikat) – Ihren modernen Nachweis für erworbene Kompetenzen.

Ihr Open Badge ist jederzeit in Ihrem persönlichen und kostenfreien Mein IT-Schulungen.com-Konto verfügbar. Mit wenigen Klicks können Sie diesen digitalen Nachweis in sozialen Netzwerken teilen, um Ihre Expertise sichtbar zu machen und Ihr berufliches Profil gezielt zu stärken.

Übersicht: Data Science Schulungen Portfolio

Mehr zu den Vorteilen von Badges

Seminare kurz vor der Durchführung

TerminStandortAktion
24.04. - 25.04.2025 Hamburg Seminar jetzt anfragen
22.05. - 23.05.2025 München Seminar jetzt anfragen
02.06. - 03.06.2025 Köln Seminar jetzt anfragen
08.07. - 09.07.2025 Nürnberg Seminar jetzt anfragen
 
Anmeldungen vorhanden

1.) Wählen Sie den Seminartyp:




2.) Wählen Sie Ort und Datum:

1.395,00 € Preis pro Person

spacing line1.660,05 € inkl. 19% MwSt
all incl.
zzgl. Verpflegung 30,00 €/Tag bei Präsenz

Seminar jetzt anfragen Auf den Merkzettel
PDF IconPDF Icon
Es gibt weiterführende Kurse, die auf diesem Schulungsthema aufbauen.
 

Diese Seite weiterempfehlen:

0
Merkzettel öffnen
0
Besuchsverlauf ansehen
IT-Schulungen.com Control Panel
Warnung Icon Sie haben in Ihrem Browser Javascript deaktiviert! Bitte aktivieren Sie Javascript um eine korrekte Darstellung und Funktionsweise von IT-Schulungen zu gewährleisten. Warnung Icon