
Modernizing Data Lakes and Data Warehouses with Google Cloud (MDLDW)
Ziele der Schulung
The two main components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment.
Zielgruppe Seminar
This course is intended for developers who are responsible for querying datasets, visualizing query results, and creating reports.
Specific job roles include:
- Data engineer
- Data analyst
- Database administrators
- Big data architects
Voraussetzungen
Basic proficiency with a common query language such as SQL.
Lernmethodik
Die Schulung bietet Ihnen eine ausgewogene Mischung aus Theorie und Praxis in einer erstklassigen Lernumgebung. Profitieren Sie vom direkten Austausch mit unseren projekterfahrenen Trainern und anderen Teilnehmern, um Ihren Lernerfolg zu maximieren.
Seminarinhalt
Module 1 - Introduction to Data Engineering
Topics:
- The role of a data engineer
- Data engineering challenges
- Introduction to BigQuery
- Data lakes and data warehouses
- Transactional databases versus data warehouses
- Partnering effectively with other data teams
- Managing data access and governance
- Build production-ready pipelines
- Google Cloud customer case study
Objectives:
- Discuss the role of a data engineer.
- Discuss the benefits of doing data engineering in the cloud.
- Discuss challenges of data engineering practice and how building data pipelines in the cloud helps to address these.
- Review and understand the purpose of a data lake versus a data warehouse, and when to use which.
Module 2 - Building a Data Lake
Topics:
- Introduction to data lakes
- Data storage and ETL options on Google Cloud
- Building a data lake by using Cloud Storage
- Securing Cloud Storage
- Storing all sorts of data types
- Cloud SQL as your OLTP system
Objectives:
- Discuss why Cloud Storage is a great option to build a data lake on Google Cloud.
- Explain how to use Cloud SQL for a relational data lake.
Module 3 - Building a Data Warehouse
Topics:
- The modern data warehouse
- Introduction to BigQuery
- Getting started with BigQuery
- Loading data into BigQuery
- Exploring schemas
- Schema design
- Nested and repeated fields
- Optimizing with partitioning and clustering
Objectives:
- Discuss the requirements of a modern warehouse.
- Explain why BigQuery is the scalable data warehousing solution on Google Cloud.
- Discuss the core concepts of BigQuery and review options for loading data into BigQuery.
Hinweise
Partner
Dieses Seminar bieten wir in Kooperation mit unserem Google Cloud Learning Partner Fast Lane Institute for Knowledge Transfer GmbH an.
Open Badge für dieses Seminar - Ihr digitaler Kompetenznachweis

Durch die erfolgreiche Teilnahme an einem Kurs bei IT-Schulungen.com erhalten Sie zusätzlich zu Ihrem Teilnehmerzertifikat ein digitales Open Badge (Zertifikat) – Ihren modernen Nachweis für erworbene Kompetenzen.
Ihr Open Badge ist jederzeit in Ihrem persönlichen und kostenfreien Mein IT-Schulungen.com-Konto verfügbar. Mit wenigen Klicks können Sie diesen digitalen Nachweis in sozialen Netzwerken teilen, um Ihre Expertise sichtbar zu machen und Ihr berufliches Profil gezielt zu stärken.
Übersicht: Google Cloud Schulungen Portfolio
Gesicherte Kurstermine
Termin | Standort | Aktion |
---|---|---|
19.08.2025 | Frankfurt am Main | |
19.08.2025 | Virtual Classroom (online) | |
25.11.2025 | Hamburg | |
25.11.2025 | Virtual Classroom (online) |
Seminare kurz vor der Durchführung
Termin | Standort | Aktion |
---|---|---|
06.06.2025 | Hamburg | |
31.07.2025 | München | |
02.09.2025 | München | |
24.11.2025 | Hamburg |